Rule-based Vehicle Routing Planning System for Inbound Supply Chain

Nov. 02, 2012
Kiyoul Lee¹ and Mooyoung Jung²

¹Department of Industrial and Management Engineering
POSTECH (Pohang University of Science and Technology)

²School of Technology Management
UNIST (Ulsan National Institute of Science and Technology)
Contents

- Introduction
 - Inbound supply chain
 - Inventory routing problem (IRP)

- Rule-based job packing algorithm
 - Supplier-driven job packing
 - Event-driven job packing

- Simulation

- Conclusion
Introduction

- **Supply Chain Management (SCM)**
 - One of the most important issues in improving enterprises’ profit
 - **Optimization** of the supply networks
 - Pursue the *flexibility, robustness* of supply chain

- **In the logistics aspects,**
 - Inbound supply chain
 - Intercompany supply chain
 - Outbound supply chain

```
Acquire raw materials
Convert raw material into specified final products
Deliver final products to retailers
```
Introduction

- **Outbound supply chain**
 - Transportation of end products
 - Consider market dynamics & customer demand
 - VMI, transshipment, etc.

- **Intercompany supply chain**
 - Material flows in manufacturing site
 - Minimize total cost through optimization
 - Factory layout design, process design, facilities planning, etc.

- **Inbound Supply Chain**
 - Treated as a kind of outbound supply chain
Inbound supply chain

Inbound flows
- The activity of **receiving**, **storing**, and **disseminating** incoming goods or material for use
- Failures of inbound case **affect** a high shock on the entire SC
- Focused on the **risk analysis**

Inbound vs. Outbound

<table>
<thead>
<tr>
<th></th>
<th>Outbound flows</th>
<th>Inbound flows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demand</td>
<td>Stochastic & periodic repetition</td>
<td>Fixed, not identical</td>
</tr>
<tr>
<td>Backorder (Delay)</td>
<td>Inevitable</td>
<td>Unacceptable</td>
</tr>
<tr>
<td>Operation Policy</td>
<td>VMI, etc.</td>
<td>Based on JIT</td>
</tr>
<tr>
<td>Inventory Management</td>
<td>Lenient</td>
<td>Strict</td>
</tr>
</tbody>
</table>

Inventory control & transportation problem should be considered
Inventory routing problem (IRP)

IRPs
- Concerned with the *distribution logistics* in SCM
- Transportation management + Inventory control
 - Determine *which customer* must be served and *amount* to supply each customers
- **Long-term problem**

Single–period model
- Treats single-period, one (or two) item problem
- Non-linear mixed integer programming model
 [Fedegruen et al. (1986), *Operations Research*, 34, 75-82]
- Mixed integer programming model
 [Chien et al. (1989), *Transportation Science*, 23, 65-76]
Inventory routing problem (IRP)

- **Multi-period Model**
 - Extension of single-period model
 - Mixed integer programming using penalty & incentive
 [Dror & Ball (1987), *Naval Research Logistics Quarterly*, 34, 891-905]
 - Vendor managed resupply model

- **Focused on the outbound supply chain**

- **In inbound case**
 - Demand type is different: no periodic repetitions
 - Under the JIT philosophy, more frequent deliveries are needed
Rule-based job packing algorithm

- **Supplier-driven job packing**
 - Make one-truckload Job using only one supplier’s shipments
 - Single round trip
 - JIT violation

- **Event-driven job packing**
 - Using production start time & travel time
 - Complex process & routes
 - Distance between vendors
Supplier-driven job packing

Procedure

Step 1: Classify the production plan based on the suppliers

Step 2: Spread out the production plan by standard time of each product

Step 3: Pack parts to their appropriate carts according to the capacity

Step 4: Pack the parts and make a full-truckload job. If a shipment is less than one-truckload and the next shipments are discrete less than 4 hr., the shipments are include (JIT violation)

Step 5: Rearrange the production plan using the jobs and departure time
Event-driven job packing

Procedure

Step 1: Sort the production plan base on product start time and travel time

Step 2: Calculate the departure time of parts from a supplier to the manufacturing site considering set-up data

Step 3: Pack parts to their appropriate carts according to the capacity

Step 4: Make a job using carts within the same time slot. If the shipments are less than one-truckload, search the nearest supplier (~10 min. travel time or 10 min. JIT violation) has shipment.

Step 5: Generate a rearranged production plan considering the job and departure time
Simulation

Simulation condition
- 3 manufacturing sites, 9 suppliers
- 200 kinds of products
- Production capacity: about 14,000 units/day
- 30 days production plans
- Time allowance of JIT: 1 hr.
- Stock for the next day: 2 hrs.

Dependent variable
- Number of vehicles
- Maximum stock level
- Average idle time of vehicles
Simulation result

- **Number of Vehicles**
 - S-driven job packing
 - Better performance
 - E-driven job packing
 - Due to Peak time

- **Maximum stock level**
 - S-driven job packing
 - Due to JIT violation
 - E-driven job packing
 - Maintain less stock level

![Graph showing number of vehicles and maximum stock level over days](image)
Simulation result

- **Average idle time**
 - E-driven job packing
 - Need to consider the **distance** between vendors
 - Due to **Peak time**

- **Performance**

<table>
<thead>
<tr>
<th></th>
<th>S-driven</th>
<th>E-driven</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Vehicles</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>Avg.</td>
<td>19.4</td>
<td>21.1</td>
</tr>
<tr>
<td>Min.</td>
<td>15</td>
<td>17</td>
</tr>
<tr>
<td>Max Stock Level</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>170</td>
<td>155</td>
</tr>
<tr>
<td>Avg.</td>
<td>140.9</td>
<td>130.8</td>
</tr>
<tr>
<td>Min.</td>
<td>111</td>
<td>105</td>
</tr>
<tr>
<td>Average Idle Time</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max.</td>
<td>2:15</td>
<td>2:34</td>
</tr>
<tr>
<td>Avg.</td>
<td>1:41</td>
<td>1:42</td>
</tr>
<tr>
<td>Min.</td>
<td>1:04</td>
<td>0:51</td>
</tr>
</tbody>
</table>
Conclusion

- **Job packing algorithm**
 - Need to managing the *inbound supply chain*

- **Supplier-driven job packing**
 - Generate *simple vehicle routes*
 - Less required the number of vehicles
 - Higher stock level due to the JIT violation

- **Event-driven job packing**
 - More appropriate to the JIT philosophy
 - Less stock level
 - Need more vehicle due to the peak time

- **Further study**
 - *Peak time relaxation method* in the event-driven job packing process
 - *Goal model* for evaluating the performance of the generated plans through each job packing process
Thank you!